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Anomalous separation of homogeneous particle-fluid mixtures: Further observations
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Previously, we reported the puzzling phenomenon of separation of components from an initially uni-
form mixture (air and smoke) in a rotating flow device (a cylindrical can with a rotating end disk). Here
we summarize further studies of this phenomenon through experiments, analysis of particle forces, and
direct numerical simulation (DNS). Separation of spherical polystyrene particles when immersed in wa-
ter or pure alcohol lends further credence to the phenomenon. We have studied the dependence of the
particle-free column size and its establishment time on particle size, particle concentration, disk and
cylinder Reynolds numbers, and fluid composition. The evolution of passive markers in DNS shows
segregation similar to that observed in experiments, supporting our kinematic separation hypothesis.
However, kinematic action, though important, is inadequate to explain the “antidiffusion” phenomenon.
Although estimates show that known particle forces cannot account for the particle separation, experi-
mental results suggest the action of a yet unknown lift force whose effect is magnified kinematically in
our apparatus. At high particle concentrations or when a small amount of solute (e.g. sugar, salt, or al-
cohol) is added to water polystyrene particle mixtures, the flow within the column becomes unstable and
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the particle-free column loses its axial symmetry; this unusual behavior is not yet clearly understood.

PACS number(s): 47.15.Pn, 47.55.kf

I. INTRODUCTION

A. Background

We observed the separation of smoke particles from an
initially homogeneous smoke-air mixture in a rotational
flow device used for vortex breakdown studies [1,2]. The
apparatus, shown in Fig. 1, consists of a cylinder and top
and bottom bounding disks that are hermetically sealed.
The top disk (whose height H from the bottom can be ad-
justed) is fixed to the cylinder, and the two together are
called the “can.” The can and the bottom disk can be ro-
tated independently. Unless stated otherwise, ‘“disk”
denotes the bottom disk. Thus, we study the flow in a
can with a rotating lid.

To summarize our previous results [1,2], when a uni-
form mixture of air and smoke is placed in motion by ro-
tating the disk only, a smoke-free vortex breakdown bub-
ble (VB) is formed (Fig. 2). When the can is rotated in the
same direction as the disk but at a lower speed, a smoke-
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FIG. 1. Schematic of the flow facility, where meridional
streamlines are shown for an axisymmetric vortex breakdown
bubble.
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free vortex column (VC) forms on the axis. Figures 3(a)
and 3(b) show respectively an intermediate and the final
state of a VC. The experiments were performed at
Re, =2500 and Re,=0 for VB, and Re,=2500 and
Re,=1250 for VC; in both cases H/R =1.8. Here, Re,
(=Q,R?*/v) and Re, (=Q,R?/v) are the Reynolds
numbers of the bottom disk and the can based on their
angular velocities 0, and Q_; v is the kinematic viscosity,
and R and H are the radius and height of the chamber.
The formation of the smoke-free column is complete
within 50-70 s at a slow rotational speed of 2-3 rev/s.
This is also the establishment time of the VB or VC.
Such rapid particle separation (at low rotation rates) led
us to believe that this phenomenon is due to predom-
inantly kinematic rather than dynamic effects.

FIG. 2. Flow visualization picture showing smoke separation
in the axisymmetric vortex bubble for Re, =2500 at £ =70 s.
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B. Motivation

Our results raised questions regarding the validity of
particle separation by kinematic effects. Some have sug-
gested that the separation of particles must be a dynamic
effect since an initially uniform smoke distribution should
otherwise remain so forever. Experiments, numerical
simulations, and particle force estimates reported here
further explore this phenomenon.

Known forces describing fluid-particle interaction
seem too weak to be important in this process. Experi-
ments to specifically evaluate the role of the largest
forces, i.e., gravity and inertial forces, in the process are
detailed in Sec. II. In Sec. IIl, direct numerical simula-
tion (DNS) results and analysis are presented for the ki-
nematic separation of massless markers. Our previous
experiments have been extended to include liquids (e.g.,
water, pure alcohol, water-alcohol solution, sugar-water
solution, and salt-water solution) seeded with spherical
polystyrene particles. Section IV presents results on the
effect of particle size d, particle concentration ¢ (number
of particles per unit volume), Re,, Q, /Q_, and fluid com-
position. Conclusions are given in Sec. V. Estimates of
particle forces and details of the numerical simulations
are given in Appendices A and B, respectively.

II. EFFECT OF FORCES:
EXPERIMENTAL EVIDENCE

It may appear that the depletion of particles near the
wall is a trivial consequence of the migration of particles
across streamlines in the presence of the wall, velocity
profile curvature, and other known forces (e.g., Stokes,
gravity, centrifugal, Mangus, etc.) acting on the particles.
However, for very small particles, which almost follow
the streamlines (i.e., very small relative velocity between
a particle and the fluid), the effect is negligible [3]. The
particles we used are too small to undergo any significant
displacement from the wall by the action of the known
forces. To understand the particle depletion mechanism,
we carefully performed experiments and also estimated
the effects of various forces. Experimental verifications
of the effects of gravity and inertial forces are elaborated
in this section, while the estimates of other forces are
given in Appendix A.

In the experiments, the initially uniform smoke-air
mixture was achieved in three ways: (i) leaving the mix-
ture at rest for a sufficiently long period, (ii) establishing
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FIG. 3. Flow visualization picture showing
smoke separation in the column vortex for
Re, =2500 and Re,=1250. (a) t =30 s; (b)
t=175s.

solid-body rotation (by rotating the can and the disk at
the same speed in the same direction), and (iii) rotating
the two in opposite directions. Once the uniform state
was established, the desired can and disk rotation rates
were set and time counted from that instant. Experi-
ments were also conducted with initially nonuniform par-
ticle distributions. In all cases, the final particle-depleted
column or bubble was independent of the initial particle
distribution.

Experiments confirm that gravity and inertial forces
play no role in the phenomenon.

A. Role of gravity

Estimates of particle forces (Appendix A) that cause
particle separation reveal that the largest relevant forces
in a smoke-air mixture are Stokes drag and gravity
(smoke particles are abut 1000 times heavier than air). It
follows that if gravity were significant in forming
particle-free fluid, separation should start from the top of
the can. Whereas unfiltered smoke showed significant
settling within 10—15 min due to a wide range of particle
sizes, smoke filtered through fine cotton remained uni-
formly distributed throughout the domain undergoing
random (Brownian) motion even after 24 h, implying that
the particles are very small and that gravity effects can be
neglected. Direct measurement of smoke particles using
an electron microscope (500 000 amplification) confirmed
the size to be less than 0.1 um and revealed their irregu-
lar cornflakelike shape (Fig. 4). Considering only gravity,
0.1-um smoke particles should sink through a distance of
about 3 cm in 24 h.

We verified the effect of gravity by rotating the top
disk only (configuration 2). In this case, a smoke-free (in-
verted) VB is formed similar to that shown in Fig. 2
(configuration 1). If gravity were causing separation at
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FIG. 4. A typical smoke particle captured by the electron
microscope.
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the top of the facility, the clear fluid formed would be ad-
vected into the bubble forming the particle-free VB.
Since for configuration 2, the distance traversed by this
clear fluid layer would be three times longer than for
configuration 1, the establishment time should be about
three times greater for H/R =1.8. However, in both
configurations, the particle-free VB establishment times
were the same, confirming the conclusion that gravity is
not the dominant factor.

B. Role of centrifugal force

The simplest way to estimate the role of centrifugal ac-
celeration is to rotate the can and the disk together at the
same speed ). When the steady state is reached, the
fluid-particle mixture attains solid-body rotation. If cen-
trifugal forces were dominant, particles would move radi-
ally outward everywhere, producing separation as in a
conventional centrifugal separator. Such solid-body rota-
tion of the fluid mixture did not reveal any separation of
practices even after 30 min. However, a small difference
(Q, —Q,.) in the rotational speeds of the can and the disk
initiated particle separation immediately.

To examine the effect of centrifugal forces along the
axis of VC where the streamlines converge at the top
(concentrating angular momentum) and spiral downward,
we inserted tubes of various diameters (0.317, 0.635, and
0.952 cm) along the axis. The role of the tube was to
prevent collapse of flow swirl near the axis and, hence,
reduce the centrifugal acceleration. The cross-sectional
area of the particle-free column and the establishment
time remained roughly the same with or without the
tube, demonstrating that centrifugal forces due to vortex
collapse on the axis play no significant role in the separa-
tion process.

We examined the effects of meridional acceleration a,,
(related to the curvature of the meridional flow; see Ap-
pendix A) in two ways: (i) instead of rotating the entire
bottom disk, a smaller disk (7.62 cm in diameter), insert-
ed inside the bottom disk (15.24 cm in diameter), was ro-
tated [Fig. 5(a)]; and (ii) the flat bottom disk was replaced
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FIG. 5. Schematics of modified facility to reduce meridional
acceleration.
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by a disk with rounded corners [of radius 1.27 cm; see
Fig. 5(b)]. Both modifications decreased the curvature of
meriodional streamlines near the bottom corner, thereby
reducing a,,. In a third configuration, both top and bot-
tom disks with rounded corners were used [Fig. 5(b)].
None of the configuration changes produced any
difference in the separation characteristics, thus
confirming that meridional acceleration also does not
play a dominant role.

III. NUMERICAL SIMULATION

A. Numerical approach

A kinematic separation hypothesis was previously pro-
posed [1,2] as a tentative explanation: the particles are
considered to be ‘““frozen” markers following the flow,
and the kinematics of discrete markers produces the ob-
served separation phenomenon. This hypothesis has been
examined using the trajectories of massless markers ob-
tained via direct numerical simulation of the flow field.

Axisymmetric flow simulations were performed on a
200X 360 grid in the meridional plane. Three types of in-
itial marker distributions were studied: (i) regular homo-
geneous, (ii) random homogeneous, and (iii) a distribution
following ¢’ «< r, where ¢’ is the “planar” particle concen-
tration (see Appendix B). Regular homogeneous and ran-
dom homogeneous marker distributions refer to the
placement of a marker at the center and at a random lo-
cation inside each square cell, respectively, in the meri-
dional plane. Numerical simulation methods and the
justification of initial marker distributions are described
in Appendix B.

B. Simulation results

Calculations were performed for Re, (=Q,R2/
v)=2500, H/R =1.8, and Q,/Q_,=0.5, consistent with
the parameters used in experiments using smoke-air mix-
tures. The fluid was assumed to be at rest at # =0. Time
evolution for 49 X 89 markers with initially regular homo-
geneous and random homogeneous distributions is shown
in Figs. 6(a) and 6(b). The corresponding instantaneous
meridional streamlines (i.e., intersections of stream sur-
faces with the meridional plane) are shown in Fig. 6(c);
the first panel of Fig. 6(c) corresponds to t =0.01 s. Each
disk acts as a Karman pump to drive the fluid radially
away from the axis and then along the cylinder wall.
During transition, the streamlines show two cells [e.g., at
t =0.01 and 8 s in Fig. 6(c)]; a smaller cell develops near
the top and a larger cell near the bottom. The flow
driven by the bottom and top disks produces anticlock-
wise and clockwise circulatory motions, respectively, in
the meridoinal plane; the corresponding streamlines are
denoted by solid and dashed lines. The descending and
ascending flows first meet along the wall and are then
directed radially inward, causing flow separation on the
cylinder wall [point 4 in Fig. 6(c) at t =8 s]. With in-
creasing time, the flow separation location moves upward
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because the ascending flow velocity generated by the
faster-rotating bottom disk is greater than that produced
by the top disk. Gradually, the two-cell streamline pat-
tern becomes a one-cell structure (obvious at ¢t =24).
Note that the streamlines produced by the ascending
flow deviate from the cylinder wall. Simultaneously, the
trajectories of discrete markers deviate from the wall,
producing a marker-free fluid layer adjacent to the wall.
The marker-free fluid then advects into the layer between
the separated streamlines of the clockwise and anticlock-
wise motions, producing a marker-depleted layer [resem-
bling a “shoulder,” which is indicated by arrows in Fig.
6(a) and 6(b) at £ =24 and 40 s]. As the anticlockwise cir-
culatory motion overcomes the clockwise motion, the
marker-depleted layer between the two circulatory

t=0

h/R
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motions moves first toward the upper corner, then radial-
ly inward. Simultaneously, the particles near the axis at
the top are driven downward and the central column is
occupied by the advecting clear fluid from the boundary
layer, eventually completing the marker-free column.

In the simulation with a random homogeneous marker
distribution, although the marker distributions are
different, the steady-state column is almost identical to
that of the regular homogeneous marker -distribution
case.

Time evolution of 49X 89 markers for the initial state
¢'= Ar is depicted in Fig. 7. Note that, although there
are no markers near the top (up to about /R =0.15) at
t =0, inward radial motion near the top moves the mark-
ers close to the axis (¢ =8,24); such initial inward marker

(@)

h/R

FIG. 6. Numerical simulation
results showing time evolution
of trajectories of 49X89 mark-
ers. (a) Trajectories for initially
regular homogeneous marker
distribution; (b) trajectories for
initially random homogeneous

(b) marker distribution; and (c) in-
stantaneous meridional stream-
lines (dashed lines correspond to
negative  stream  functions).
Re, =2500, Re,=1250, H/R
=1.8. Time ¢ in seconds is

shown in the figure.
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displacements are not so apparent for the initially homo-
geneous marker distributions. Similar to the homogene-
ous cases, the ¢'= Ar case also shows marker depletion
near the cylinder wall where flow separates from the wall
(¢ =8) and the formation of a marker-depleted shoulder.
Although the details of the marker trajectories are
different for the three different initial marker distribu-
tions, the steady-state marker-free column diameter is al-
most the same.

To examine the effects of marker concentration, the
evolution of 19X29 markers was computed for an initial-
ly regular homogeneous distribution (Fig. 8). The evolu-
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tion process is similar to that for the higher marker den-
sity 49 X 89 [Fig. 6(a)]; however, the final column diame-
ter is larger for the lower concentration; the ratio of the
marker-free column diameters for 19X29 and 49X89
markers is about 3.

The events that lead to the formation of the marker-
free column (e.g., initiation of the flow and particle sepa-
ration from the wall and the formation of shoulders) in
the simulation are almost the same as those observed ex-
perimentally. Evolution of the marker-depleted shoul-
derlike layer observed in the experiment is shown at three
time instances in Fig. 9, which depicts the region near the
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top corner only. In these pictures, the white dots denote
particles, while the black areas are regions that are de-
void of particles.

C. Analysis of DNS results

Numerical (as well as experimental) results show that
the separation process occurs near the lateral wall. If the
initial near-wall clear layer thickness 8, is increased, the
amount of separated clear fluid and, hence, the diameter
D of the central clear column increases. In simulations
with a regular particle distribution, §,, is also the dis-
tance ¢ between nearest particles and related to particle
concentration c¢ as

8,=¢=c 13, (1)

by considering one particle in a cube of length ¢.
To check the accuracy of the marker positions at each

h/R

time step, we computed the streamlines until steady state
was reached, and then several markers were introduced
near the bottom plate. Indeed, with increasing time, each
particle followed its trajectory (meridional streamline)
and came to its original position. This implies that no
perceptible error is introduced in the integration process.

More recently, numerical studies [4] also demonstrated
the formation of a vortex bubble with depleted markers.
In contrast to our initial marker distribution, they intro-
duced markers along the axis. Nevertheless, marker de-
pletion in both cases is due to the nonuniformity of meri-
dional streamlines and hence marker concentration.

For marker distributions corresponding to £ =1/50 as
in Fig. 6(a) and ¢£=1/20 as in Fig. 8(a), the steady
column diameters (nondimensionalized by the disk diam-
eter) are, respectively, 0.24 and 0.6 at ¢ =160, revealing
that D is related to marker concentration. This was true
for both regular and random homogeneous particle distri-
butions. The dependence of D on ¢ in the simulations is

r/R

t=280

FIG. 7. Numerical simulation
results showing time evolution
of trajectories of 49 X 89 markers
for initially linear distribution of

_ markers c¢'~r. Re, =2500,
t=160 Re,=1250, H/R=1.8.
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FIG. 8. Numerical simulation
results showing time evolution

of trajectories of 19X29 markers
for initially regular homogene-

ous marker distribution.
Re, =2500, Re.,=1250, H/R
=1.8.

" (a) - (c)

A X,
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domain covered in

FIG. 9. Flow visualization pictures showing
particle separation sequence near the corner in
the case of vortex column for an initially
homogeneous mixture of water and poly-
styrene particles (44 um). Re,=28800,
Re,.=14400, t =30, 45, and 60 s.
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not unexpected. When the marker concentration in-
creases, the minimum distance between the markers and
the wall (8,,;,) decreases and these near-wall markers fol-
low streamlines closer to the axis, producing a smaller
marker-free column diameter. We computed the time
evolution of 19X29 markers with an initial distribution
similar to that shown in Fig. 8 (# =0), except that the dis-
tance between the outermost layer of markers and the
walls of the disk and the can was decreased. This distri-
bution produced a smaller marker-free D than that
shown in Fig. 8. These simulations confirm that D de-
pends on the proximity of the markers to the walls; for a
regular distribution, this proximity is dictated by marker
concentration ¢, and hence D shows a dependence on c.
However, in experiments, the minimum distance between
the particle center and the wall is determined by its ra-
dius, not the concentration. Thus, a relevant length scale
in experiments is the particle diameter d. This has been
experimentally verified and is discussed in Sec. IV.
Although d is very small, our flow device acts like a ki-
nematic amplifier of marker distance from the wall. It is
clear from the meridional streamlines that when a marker
advects along a streamline, its minimum distance 8, from
the axis is much greater than the minimum distance &
from the bottom wall. For VC with small values of &
and §,, an amplification coefficient k can be defined as

min

min

172

Y,
_m=m , ()

'min W,,

where w,, is the maximum azimuthal vorticity at the bot-
tom, r,, is the corresponding radius, and w,, is the max-
imum axial velocity on the axis. The relation in (2) is ob-
tained by Taylor expansion (up to the third term) of a
meridional stream function at two locations (e.g., close to
the axis at a radial distance of §, and near the bottom
surface at a distance §.,;,) and by equating these two ex-
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pressions.

The value of §,;, cannot be less than the particle ra-
dius, and D in the steady regime can be determined by
the relation

D=kd . (3)

For VB, (3) is not valid because a streamline even
infinitesimally close to the bottom disk deviates from the
axis on the bubble surface over a finite distance, and thus
the separation region should not depend on the marker
concentration. Steady-state marker distributions for ini-
tially 19X29 and 49 X 89 regular homogeneous markers
are shown in Figs. 10(a) and 10(b). We have also per-
formed computations for initially random marker distri-
butions (not shown here). These results demonstrate that
the final marker depleted VB size is independent of these
two initial distributions and the concentrations of mark-
ers, and that the marker depleted VB is quite similar to
that observed experimentally (Fig. 2).

These results for VB seem to confirm the kinematic
separation hypothesis. However, this hypothesis is inade-
quate to explain separation for VC. Using k =50 (ob-
tained from the simulation of VC) and smoke size d =0.1
pum, Eq. (3) leads to D =5 um, which is much smaller
than that observed experimentally. For experimentally
observed D, §_;, would have to be 10* times the particle
size. If we account for this discrepancy by considering
that smoke particles sink due to gravity from the top disk
during the flow establishment time (say 60 s), (A7) gives
8,=21.6 um. Using k =50, we obtain D =0.18 mm,
which is still too small. Thus, although the particle sepa-
ration picture obtained via DNS is qualitatively con-
sistent with experimental observation, quantitatively they
are different. It is quite plausible that an unknown in-
teraction between particles and the apparatus wall may
have significant effects on D and must be taken into ac-

count.
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FIG. 10. Numerical simulation results
showing the marker separation in a vortex
breakdown bubble for initially regular-
homogeneous marker distribution. (a) 19X29
markers; (b) 49X89 markers. Re,=2500,
H/R=1.8,t=160.
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IV. QUANTITATIVE MEASUREMENT

A. Experimental approach

Our experiments with smoke-air mixtures have limita-
tions: irregular particle shape, unknown size distribution
and concentration. These are overcome by using mix-
tures of water and spherical polystyrene particles of vari-
ous sizes (5, 10, 21, and 44 um diameter). The depen-
dence of D and its establishment time on particle size and
concentration over a range of (2, —_.) and Re, have
been quantitatively studied. Separation of 21-um parti-
cles in alcohol and other mixtures has also been studied.

B. Experimental results

Figure 11 shows the linear dependence of the column
diameter D on the particle size d for Re,=14410,
Q,/9,=0.5 and volumetric particle concentration
¢, =6.39X107% [c,=(volume of the particles)/(volume
of the chamber)]. Using the minimum distance of a parti-
cle from the bottom disk as its radius, the linear depen-
dence follows (3) with k =1300, a value much higher
than k =50 given by DNS. Purely kinematic effects can-
not account for this large difference, thus leading to the
conclusion that there must be some unknown force repel-
ling the particles away from the walls.

Experiments also revealed a nontrivial dependence of
Don (2,—Q,). For a given d at a fixed Re,, D is found
to increase with decreasing (Q,—Q.). However, for
solid-body rotation, i.e., Q,—Q,=0, the particle-free
column does not form. For a given Q,, with increasing
Q, the meridional streamlines are increasingly concen-
trated near the cylinder wall and rarefied near the axis be-
cause of a stronger radial flow produced by the upper
disk. Streamlines in effect move away from the axis pro-
ducing a larger particle-depleted column.

Our data for various sizes of polystyrene particles in
water as well as in pure alcohol and for various values of
Q,—€Q, and Re,, collapse onto a single line in the
(D*;Q*Re}’?) coordinates (Fig. 12), where D*=D /d,
Q*=(Q,—Q,)/Q,. Data for the smoke-air mixture in

70 T T T T j

60 | 4

50 —
40 + -
D (mm) 30 _ ]
20 -

10 - B

0 | L L L
0 10 20 30 40 50

d (um)

FIG. 11. Dependence of the column diameter D (in mm) on
particle size. Re, =14410, Q,/Q,=0.5.
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FIG. 12. Dependence of nondimensional column diameter
D* (=D/d) on Q*Re}’%.

these coordinates also collapse but onto a different line.
In addition to a jump between these two cases, the varia-
tion in the smoke-air case is higher than that in the
water-particle case. The reason for this jump is unclear.
However, the collapse of data onto a single line for spher-
ical polystyrene particles in the two separate media, e.g.,
water and alcohol, and the collapse of data for irregular
cornflakelike smoke particles onto a different line indicate
that the jump may be related to the shape of smoke parti-
cles. Note that the dependence of D* on Re}’? indicates
that the boundary layer characteristics play an important
role.

With decreasing values of Q,—,., the particle-free
column establishment time increases as ¢t ~1/(,—Q,)
because of the decrease in the meridional flow in the vor-
tex core region. The establishment time of the steady
particle-free column is determined by the time at which
the leading edge of the descending column reaches the
bottom disk. Experimental data collapse well in the non-
dimensional coordinates [¢(Q,—Q.);Re}’?], as is shown
in Fig. 13. This dependence can be expressed as

t=2Rel/2(Q,—Q, )" !. @)

The time ¢ increases with Re, and decreases with in-
creasing velocity difference (Q,—Q.). For example,
when Re,=2500 and Q,—Q_, =3.23 rad/s, (4) yields

500 T T T T
5 um
10 um 5 _
21 pm X
44 pm a &
0.1 um (smoke) G;%O

@O

200 - (o] 4
®

100 L4 E

400 -

e o 0O

300

' =t (Qpr— Qo)

0 50 100 150 200 250

Rebl /2

FIG. 13. Dependence of the particle-free column establish-
ment time t*=1(Q, —Q,) on Re,.
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FIG. 14. Dependence of column diameter D (in mm) on par-
ticle concentration. Re,=28820, Q,/Q.=0.5, H/R=1.125,
10-um particles.

t =31 s, which is comparable to the flow establishment
time.

Note that, unlike the column diameter, the column es-
tablishment time data for smoke and polystyrene parti-
cles collapse onto a single line. This is due to the estab-
lishment time being a characteristic not of the separation
phenomenon, but of the kinematics of the flow where
particles are frozen to the flow irrespective of their
shapes.

The influence of particle concentration is shown in Fig.
14 for 10-um particles at Re, =14 410 and Q*=0.5. The
column diameter D shows no significant variation even
with a 100-fold increase in the particle concentration.
This is consistent with the fact that, in laboratory experi-
ments, the smallest distance between the particles and the
walls depends only on d, and hence D depends on d, not
onc,.

C. Some striking observations

1. Concentration

Although particle concentration within a certain range
had no obvious effect on particle-free column diameter

(@ ®) (©
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(Fig. 14), further increase in the particle concentration
led to an initially axisymmetric column which first be-
came unsteady and subsequently asymmetric. Figures
15(a)—15(c) show schematically the development of asym-
metry with increasing particle concentration (shaded re-
gions represent column cross section). Figure 15(a) shows
an axisymmetric column at low particle concentration.
At a higher particle concentration, the column becomes
asymmetric [Fig. 15(b)]. When the particle concentration
is increased further, the initial circular cross section be-
came ellipticlike, then dumbbell shaped, and finally S
shaped. Figure 15(c) shows instantaneous column cross
sections at different heights. For still higher particle con-
centration, the column first becomes asymmetric as
shown in Fig. 15(b) and then its cross section starts de-
forming. The cross section is then elongated in the az-
imuthal as well as radial directions until the thin
particle-free regions can no longer be identified. Time
evolution of the cross section at approximately the
midheight of the column is schematically shown in Figs.
16(a)-16(k). After the disappearance of the sheared
column, a new particle-free column appears after des-
cending from the top; the sequence just described is re-
peated then, and so on.

These results are indeed surprising. An increase in the
particle concentration should increase the effective
viscosity (according to Einstein’s formula), thereby de-
creasing the effective Reynolds number. In this case, it is
natural to expect a more stable state, contrary to the op-
posite effect observed.

A systematic study was performed using a known num-
ber of polystyrene particles in water for various values of
Re; and Q*. Experiments revealed that the loss of sym-
metry of the particle-free column depends on volumetric
particle concentration ¢, and the parameter Q*(Re,)!"2
For 5-, 10-, and 21-um polystyrene particles, loss of axial
symmetry of the column occurred when c, reached a
value of about 3.4X107° when Q*(Re,)'/?~120, ir-
respective of particle size. With decreasing Q*(Re;)!/?, a
higher ¢, was needed for initiation of column symmetry
breaking. For example, when Q*(Red)l/ 2=105, asym-
metry occurred for ¢, =5.1X 10™% Symmetry breaking
could not be observed for 0*(Re,)'2 <100 since the re-

AZ

FIG. 15. Effects of particle concentration
on the development of the particle-free vortex
column shown schematically. (a) Low concen-
tration, (b) moderate concentration, (c) high
concentration.




(a) (b)

quired increased particle concentration caused
insufficient contrast for visualization due to intense parti-
cle scattering. Since the size of smoke particles is at least
an order of magnitude smaller than the polystyrene parti-
cles, symmetry breaking of the column for the smoke-air
mixture could be observed even at Q*(Re,)!/?=~20.
However, in the smoke-air case, the value of ¢, is un-
known.

The observed unsteadiness and symmetry breaking of
. the column is not the effect of high values of Re,; or Q*,
as revealed by visualization using fluorescent dye in pure
water or water with a low particle concentration. This
experiment was performed for Q*(Re;)'/2 <160 (because
of the speed limitations of the facility) and within this
range, the column remained steady.

Recall that the particle-free column diameter D de-
pends on the parameter Q*(Re,)!”? (see Fig. 12); a lower
Q*(Re,)!”? produces a larger column diameter. The ob-
served dependence of the symmetry breaking on
Q*(Re,)!”? indicates that a smaller diameter column is
prone to become unstable for a smaller particle volume
fraction. This suggests that the slenderness ratio H /D is
a pertinent parameter to initiate symmetry breaking. The
mechanism that produces asymmetry at high particle
concentrations and the role of H /D need further study.
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FIG. 16. Schematics showing the time evo-
lution of particle-free column cross section for
particle concentration higher than the case in
Fig. 15(c).

2. Fluid composition

The polystyrene particles have a specific gravity of
1.04. For water, if we use v=10"% m?/s and p=1 g/cm3,
(A7) gives the terminal sedimentation velocity
w, =5.45X10"7 and 4.2X107° m/s for the 5- and 44-
um particles, respectively. These values of w, are too
small to explain the establishment of a particle-free
column within about 60 s. But to eliminate even this
small difference in density, small quantities (see below) of
sugar were added to increase the specific gravity of the
sugar-water solution. After each addition, the water, su-
gar, and particles were thoroughly mixed by rotating the
disk and the can in opposite directions. Figure 17(a) is
for pure water and Figs. 17(b) and 17(c) are for the
water-sugar solution, all with 10-um particles; specific
gravities of the sugar-water solution for the cases shown
in Figs. 17(b) and 17(c) were 1.0016 and 1.0033, respec-
tively. Figures 17(a)—17(c) show that, with addition of a
small amount of sugar, the particle-free column diameter
is, at first, reduced considerably [Fig. 17(b)], and then the
column loses its axial symmetry [Fig. 17(c)]. The
particle-free column disappeared completely when the
sugar-water solution specific gravity reached about 1.01,
which is still noticeably lower than that of the poly-

FIG. 17. 10-um polystyrene particle separa-
tion in water and effects of additive (sugar). (a)
in water; (b) in water-sugar solution, specific
gravity = 1.002; (c¢) in water-sugar solu-
tion, specific gravity =1.005. Re, =28 820,
Q,/9Q.=0.5.
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styrene particles.

Similar results, e.g., reduction in the particle-free
column diameter, loss of axial symmetry, and finally com-
plete disappearance of the column were observed by in-
creasing specific gravity by adding salt instead of sugar
and even when the specific gravity was lowered by adding
ethyl alcohol (specific gravity 0.789). However, when we
used pure alcohol instead of a water-alcohol solution,
separation of particles in alcohol occurred as in pure wa-
ter. The effect observed for both increasing or decreasing
specific gravity of the solution implies that specific gravi-
ty of the particles is not the cause of unsteadiness. Even
for the air-smoke mixture, adding alcohol vapor (typical-
ly from 2-3 drops, which is negligible by volume) in the
flow chamber revealed the same sequence of anomalous
events as observed when adding sugar or salt in water-
polystyrene particle mixture.

In all of these cases, the amount of additive and the
corresponding change in the kinematic viscosity of the
water-additive mixture were small; thus the effect due to
changes in the Reynolds number should be negligible.
Furthermore, the formation of a particle-free column was
observed over a wide range of Reynolds numbers
(1000-5000 using air and 7000-57 000 using water). A
small change in the Reynolds number (due to a small
amount of additive) is not expected to affect the flow.
However, it appears that additives change the dynamics
of the flow within a region near the axis.

We examined the cause of flow unsteadiness via visuali-
zation by allowing a drop of fluorescent dye to seep
through a small hole at the center of the top disk such
that the flow is not disturbed. The effect of the solute on
the column is schematically shown in Figs. 18(a)—18(c).
For pure water, a steady spiral central column marked by
the fluorescent dye is observed [Fig. 18(a)]. However, for
the water-sugar or water-alcohol solution, a hemispheri-
cal bubble formed at the top center; the injected dye
remains trapped inside the bubble. The converging meri-
dional streamlines are disturbed as they pass around the
bubble and descend downward. During this process, a
small amount of dye from the bubble diffuses and advects
downstream [Figs. 18(b) and 18(c)]. The disturbed flow
downstream of the bubble presumably induces the un-
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unsteady
column

FIG. 18. Schematics showing
the effects of additive on the flow
instability observed by fluores-
cent dye streak. (a) Water; (b),(c)
water and solute.

steadiness and asymmetry of the particle-free central
column. For a given set of H/R, Re,;, and Q*, one
would expect the flow to be the same irrespective of the
fluid composition. However, our experiment shows a
surprising dependence on fluid composition (i.e., forma-
tion of a bubble).

V. CONCLUSIONS

The “antidiffusion” phenomenon is manifested in the
spontaneous separation of components of an initially uni-
form mixture in a simple rotating device. The fluid veloc-
ity in this device is so small that particle separation
within a short time (on the order of tens of seconds) can-
not be explained by the action of known forces acting on
the particles. The purely kinematic explanation of this
phenomenon, considered in Ref. [2], is partially
confirmed by numerical simulation of massless marker
trajectories and by experiments that demonstrate that the
particle-marker-free column size increases with increas-
ing distance between the particles-markers and the wall.

Experimentally, this phenomenon can be explained in
the kinematic frame by viewing our device as a hydro-
dynamic amplifier and considering the finite size of real
particles, where a particle very close to the bottom disk is
displaced through a large transverse distance from the
axis. However, this effect is not explained quantitatively,
though the diameter D is found experimentally to in-
crease proportionately to the particle size consistent with
the kinematic explanation. The experimentally observed
amplification coefficient for particles is much greater than
that obtained for markers via numerical simulations. The
higher value of k observed experimentally may also be a
result of a significant unknown repelling force acting on
the particles near the walls.

A strong dependence of the flow on the fluid mixture
composition is extremely enigmatic. Small amounts of an
additive (sugar, salt, or alcohol in water, alcohol vapor in
air) make the flow unsteady, resulting in symmetry break-
ing of the particle-free column, and finally, total disap-
pearance of the column. The influence of fluid composi-
tion is very surprising because the solutions are Newtoni-
an fluids, which are characterized by two parameters
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only: density and viscosity. But our experiments show
evidence of a third parameter —the solution composition.
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APPENDIX A: FORCES ACTING ON PARTICLES

1. Identification of forces

Consider the flow of a fluid-particle mixture with a
very small volumetric particle concentration. Thus the
interparticle distance is so large that the interaction be-
tween particles can be neglected and the particles con-
sidered isolated.

Gravity and inertial forces depend on particle density
pp and are proportional to d 3 (d being the effective parti-
cle diameter). This is also valid for forces related to pres-
sure gradient, e.g., buoyancy force.

An expression for the viscous interaction body forces
typically assumes the functional dependence

fzf(yﬁféyD’V'D) ’

where U'is the fluid velocity, @ is the particle center veloc-
ity, and D is the fluid deformation tensor, e.g., the sym-
metric part of grad v. Passman [5] used the representa-
tion

F=B5—®)+B,D(F—)+B,V-D+B,DV-D,
=fi+fatfst+fa,

which contains the expressions employed by McTigue,
Givler, and Nunziato [6]. Terms appearing in this ex-
pression are associated with Stokes drag [7], Safman lift
[8], Faxen force [7], and Ho-Leal lift [9]. Coefficients are
determined from an approximate solution of the Navier-
Stokes equations. These coefficients are typically func-
tions of fluid density p, viscosity u, TrD, |V-D|, and
characteristic particle size d (for an incompressible fluid
TrD=0).

The expression of Stokes drag for a spherical particle is
well known [10]:

(A1)

(A2)

Fi=3mudT—w) . (A3)
The magnitude of the Saffman lift force [8] is
f2=1.62p(v —w)d*(kv)/?, (A4)

where « is the magnitude of velocity gradient and v=pu/p
is the kinematic viscosity. [We are not sure if the second
term in (A2) is a relevant representation of (A4)]. A com-
parison of (A2), (A3), and (A4) shows that f,~d and
f2~d?. It can also be shown that f;~d* [7] and f,~d*
(9.

It is worthwhile to mention that the Basset force fp
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[7], associated with the relative acceleration of a particle,
is proportional to d?, and the Magnus lift force f,, due to
particle swirl is proportional to d3. According to Rubi-
nov and Keller [11], the Magnus force for small Reynolds
numbers can be expressed as

fM +md pQX(v—w) (AS)

where () is the angular velocity of the particle. Note that
fu does not depend on viscosity, indicating that for small
Reynolds numbers (which correspond to large v)
fum <<f,, and hence the Magnus lift (A5) is insignificant.
Since d is very small in our case, the dominant force
acting on the particle is f;, and we will compare other
forces with f,. Consider the ratio
f1_ 5.8 2

f: d

For practical values of d, v, and «, f{ >>f,. Neverthe-
less f 5, being normal to f 1» can be important in our case.

4
K

(A6)

2. Evaluation of forces

We now examine the forces acting on the particles in
our apparatus in the parameter range of separation of
smoke from air (Fig. 3): R =0.0762 m, H =0.1397 m,
v=15X10"%m?/s, Q,=6.46 rad/s, and Q,=3.23 rad/s.
The maximum centrifugal acceleration a. ~0.32g occurs
at the rim of the disk for both VB and VC, where g is ac-
celeration due to gravity. The meridional acceleration
a,, near the bottom corner of the flow device where meri-
dlonal streamlines strongly converge [see Fig. 6(c)] can be
estimated as a,, =u2/8, where u is the local particle ve-
locity and & is the boundary layer thickness. For the
disk, the Von Karman solution gives the maximum value
of ¥u=0.2Q,R ~0.1 m/s (see, for example, Ref. [12]).
Since 8=R /Re}’?~1.52 mm, we have a,, =0.64g. Thus
for our experiments, the acceleration is on the order of g.

Experiments reveal that although kinematic separation
is present and results in the formation of particle-
depleted column, it is not sufficient to produce such a
large D. This observation suggests a significant lateral
force that repels the particles away from the walls, thus
amplifying the particle-free fluid layer that accumulates
in the vortex core.

The first candidate for the lateral force is gravity near
the top. Using the Stokes formula (A3), we obtain the
sedimentation velocity

1 g Ppr— P
=_——q2=—ft — A7
we =159 - (A7)
For smoke partlcles of d=0.1 um and P, /p=1000,

v=15X10"° m?/s for air, w,=3.6X 10~ 7 m/s. The cor-
responding Reynolds number based on the particle diam-
eter is 2.4 X 10~ °, guaranteeing the validity of Stokes law.
In this case, the time needed for particle depletion from a
volume 7 near the top is t =7/7R 2wg. If we assume that
the sedimentation-produced clear fluid near the top is ad-
vected toward the column core by meridional motion to
produce the particle-free column, we can estimate the
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column formation time. For the case shown in Fig. 3(b),
the volume 7 of the particle-free column is about 2% of
the total flow volume. Creation of this volume of
particle-free fluid by sedimentation would require ¢ ~2.2
h; but the column is established within #~50-60 s.
Thus, gravity and centrifugal forces do not play any
significant role.

Since Basset and Faxen forces act in the streamwise
direction near the wall, we only consider the Saffman
force f, and the Ho-Leal force f4. First we consider f,
acting on a particle near the vertical wall. We assume
that the relative velocity (V—w) arises due to gravity.
Thus ¥ — in (A4) has to be equal to w, in (A7). To esti-
mate k, we assume that the maximum velocity gradient in
the flow occurs at the bottom disk rim, and we obtain
(=du/dn)~u/8=66 s~!. We also assume that f, is in
equilibrium with the force due to its radial velocity w,.
Thus, instead of ¥ — in (A3) we use w,. Comparison of
(A3) and (A4) yields
172

w,=0.172w,d | =~ | =13X10""m/s. (A8)

With this velocity, a particle would take about 2 h to
move through a distance of d. Such a small value of w, is
related to a very small relative velocity w,.

The Ho-Leal force f,4, on the other hand, does not de-
pend on ¥ —w and is determined only by flow deforma-
tion (which is not small) and interaction with the boun-
daries. In our notation, the Ho-Leal formula can be ex-
pressed as

_ u?

3
w,—m G(s),

d
R (A9)

where s =y /R and y is the distance from the wall. The
function G (s) is given numerically. Near the wall of a
pipe flow, we obtain G ~19.2 s~ !/2 for small s and since
G — o for s—0, a particle on the wall experiences a
large repelling force. However, if we consider a particle
whose center is at a distance d /2 from the wall (i.e., the
particle is touching the wall), w,=1.9X 1072 m/s. This
velocity is almost of the same order of magnitude as in
(A8), and these estimates of w, and w, provide the upper
bound of velocities, especially if one takes into account
that the Saffman force decreases closer to the wall [13].

Leighton and Acrivos [14] analyzed the lift L on a
small sphere of diameter d touching a plane in the pres-
ence of a simple shear y and found

L=2.3(yud*)(yd?/v) , (A10)

which is proportional to d*. Equating this lift with the
Stokes force provides transverse particle velocity on the
order of 10~ ! m/s for d =1 mm. Transverse velocity of
this magnitude would require several thousand hours to
form the particle-depleted volume observed.

Thus we conclude that known hydrodynamic forces
are not strong enough to cause the experimentally ob-
served particle separation.
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APPENDIX B: NUMERICAL SIMULATION

1. Flow field and marker trajectories

The flow is simulated by considering a cylinder of ra-
dius R and height H. The bottom disk is rotated at a
constant angular velocity Q, while the cylinder along
with the top disk is rotated at 2, in the same direction.
Time and length are nondimensionalized by Q, and R,
respectively.

The flow is assumed to be axisymmetric and, therefore,
the equations for £ (=rvy), n (=wy/r) are solved in the
cylindrical coordinates (7,0,z ):

o, 8, 0 1[0, B 1) g,
ror Yoz Reb 3z or? ror |’

9 o on
at VU ar Ve

108 _11 39y

- +

r* 0z Reb or? r o 9z2 » (B2)

where Re, =Q, R %/v, the Reynolds number of the disk.
In addition, we solve Poisson equation,
a 2t ar roor’

which relates the meridional stream function 3 with 7,
where 1 is defined such that

1y _ 13y

r oz r or

r

(B4)

’ z

The boundary conditions we used are as follows.

=0, £=0:
9 _o (r=0, 0<z<H/R);

" (B5)
P=0, {=C:

n=—%2r32£ (r=1, 0<z<H/R); (B6)
¥=0,&=r%

n=——%2—i"ﬁ—' (z=0, 0<r<1); B7)
and =0, £=Cr%

n=——1—fﬁ'§ (z=H/R, 0<r <1). (BS)

2 3z

We used a fourth-order-accurate compact differencing
scheme for spatial derivatives on a 200X 360 grid and a
fourth-order Runge-Kutta scheme for time differencing.

From the velocities v,=dr/dt and v,=dz/dt, the
marker position (7,z) was calculated using the fourth-
order Runge-Kutta scheme, while its velocity at the new
location was computed by an area-weighting method. To
achieve a high accuracy in high-velocity gradient regions
near the boundaries, a fourth-order-accurate interpola-
tion scheme was used.
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2. Initial marker distribution

We select N massless markers and assign their initial
positions to obtain a ‘“‘uniform” distribution. The con-
cept of a uniform distribution in the case of a discrete set
of markers is nontrivial. To obtain a “uniform” distribu-
tion, we can, for example, divide the flow domain into
small cubes, placing one marker at the center of each
cube; this corresponds to a regular homogeneous marker
distribution. On the other hand, a random, homogeneous
marker distribution can be obtained by placing each
marker at a random location inside each cube. However,
such a description of an initially uniform distribution is
not convenient for our case. First, it is impossible to
divide a cylindrical volume into regular cubes. Second,
for an axisymmetric flow, such marker distributions will
produce three-dimensional trajectories, requiring a long
computational time. Thus we devised a simplified model
that uses a small number of markers to simulate experi-
ments with a considerably larger number of particles.

To simplify the problem, we consider the motion of
markers in the meridional plane, which is divided into a
square grid. For the axisymmetric case, the particle tra-
jectories can be obtained from the system of equations:

%=v,(r,z,t) , %=v,(r,z,t) ,

B9
40_1, ., )
e r 007

where (r,z,0) are cylindrical coordinates and ¢ is time. It
is sufficient to solve only the first two equations, which
form a closed system for the axisymmetric velocity field
(v,,v,,v9). This approach allows the values of r and z to
be considered, not as the real marker locations in cylin-
drical coordinates, but rather their cylindrical projections
onto the meridional plane (r,z). In this case, it is possible
to formulate a two-dimensional problem considering (r,z)
as Cartesian coordinates to describe the motion of mark-
ers in the meridional plane. However, if we consider a
random but homogeneous volume distribution of materi-
al particles with concentration ¢ (number of particles per
unit volume), this distribution corresponds to a nonuni-
form distribution in the (7,z) plane with concentration ¢’
(number of particles per unit area).
For the continuum case, the transport equation

ac +divev =0
at

leads to ¢ =const for a 3D incompressible flow (divv =0).

(B10)
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But if we consider the axisymmetric flow as a planar flow
with velocity components v, and v,, then

dv, + dv,
or az

vr
=——L#0.
.

For the planar concentration ¢’, (B10) can be written
as

(B11)

This equation is satisfied by ¢'= Ar, where A4 =const.
Thus, the distribution ¢’= A4r in the meridional plane
corresponds to a uniform distribution ¢ =const in space.

The physical meaning of these distributions is as fol-
lows. For a homogeneous distribution of particles in the
cylindrical volume, the number of markers in a cylindri-
cal layer of thickness dr at a radius r, will be more than
that in an inner layer at r, (r, >r;). Since the perimeter
of the layer is proportional to r, the number of projected
particles (» =const) on the meridional plane will increase
proportionately, i.e., ¢’~r. Such a linear distribution
does not correspond to the experimental situation where
the uniform space distribution corresponds to a uniform
distribution in the laser sheet. The particles seen in the
laser sheet are due to the presence of particles in the laser
sheet, not the projections of out-of-plane particles.

To avoid this difference, we describe an alternative dis-
tribution. Consider a ring layer of thickness dr and
height dz, and n markers with radial coordinates r;,
where each marker is placed in a cell of length d/ in the 6
direction. If the coordinates r; are all different, projec-
tion of the ring onto the meridional cell drdz will contain
n points. But if r; are all equal, the projection of all
markers will coincide at a single point. Ind this case, a
homogeneous volume distribution corresponds to a
homogeneous distribution on the meridional (7,z) plane,
and the position of the markers within the meridional cell
drdz can be random. Thus, the simplest mathematical
model, contrary to the real situation, considers a not
quite random marker distribution in the device. Note
that, for such a projection method, the number of mark-
ers per unit area should satisfy (B11) without the right-
hand side, i.e., Eq. (B10) for the axisymmetric case, and
one can suggest that ¢’ ~c. Also note that such a projec-
tion method is valid only for markers, not for real parti-
cles having mass.
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